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Negative Absorption by the Electrons in a Magnetic Trap 
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Abstract 

The absorption of the high-frequency waves by a non-relativistic electron moving in a 
magnetic trap is considered in the dipolar approximation. The domains in which negative 
absorption takes place are found. 

The existence of negative cyclotron absorption in an homogeneous and 
constant magnetic field is well known (Schneider, 1959; Sokolov & Ternov, 
1966; Gaponov & Petelin, 1967). This effect is due to the relativistic 
corrections, and is thus rather small. Here, we shall consider the more 
complicated case of an inhomogeneous magnetic field having the potential 

The motion in such a field is finite and characterized by three frequencies. 
Upon certain combinations of these frequencies negative absorption will 
take place, even in the non-relativistic case. For each of these combinations, 
this effect exists only for certain conditions imposed on the relation between 
the oscillatory and the rotational parts of energy. 

We will first examine the motion of the particle in the magnetic field (1) 
in the absence of an external electromagnetic field of high frequency. We 
will then develop a formalism for calculating the absorption power, valid 
in the non-relativistic and dipolar approximation, which can also be used 
for many other problems. We will finally find the zones of positive and 
negative absorption and study their dependence on the oscillatory- 
rotational energy ratio. 

1. Unperturbed Motion 

For our problem it is convenient to use cylindrical coordinates, in which 
the Hamiltonian is 

Ar = A~ = 0 (1.1) 
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The range of rotation of the electron changes according to its displacement 
along the z axis. In the position z = 0 the electron describes a circle of radius 

[2cP~ 't 1/2 
r0 =  le- d 

in an arbitrary position its radius of rotation can be represented as 
r = r0(1 + ~:). Let us assume that the possible values of ~: are small and 
that the parameter of inhomogeneity A is large in comparison to the 
amplitude of the axial oscillations: z/A ~ 1. Under such conditions we can 
rewrite (1. l) in the following manner: 

Ho = ~-m 2 & pz2 + pr 1 & ~2 + ~ (1.2) 

The corresponding Hamilton-Jakoby equation is 

ro - ~  \ ~ !  + ~ 2 +__ro~\~] \ + +-~ (1.3) 

Its solution will be of the form 

S = P~. ~ + S,(~) + S~(z) 

Since the movement of the electron is finite and periodic it is reasonable to 
introduce the action-angle variables I~ - r Hence, the solution of the 
equation (1.3) expressed in terms of I~, (, % z is written in the following 
manner: 

S= Ir  I z (~  ~ J [ 1 -  z~2] + arcsin ~ ) +  I~(~o J [ 1 - ~ z ] +  arcsin/o ) 

(1.4) 

where Zo = (Is re A/Ir ~o = (IJIr and the Hamiltonian (1.2) is equal 
to ( ,e, o 

Ho=wn I~+ +~I~ ; WH= mc 

We can now express the coordinates of the electron in terms of the angular 
variables r162 r r according to the equations r162 = OS/OI~. 

It will be shown that 

(P = $4/'r - 4~r sin 2$f'~ - 2Ir sin 2$U~ 

z = Zo sinr ~ =~:o sin r (1.6) 

In addition, the dependence on time of the variables according to Hamilton's 
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equations # '~ = OHo/OI~ is that of uniform motion: 

aHo 
~r ~ =oji t + 8i ; ~ = 0I~ 

ro Iz\ ro 
(1.7) 

In accordance with our assumptions, we have 

ro Iz ZO 2 

2d I ,  2A 2 < 1 

and, consequently, ~o~ m ~o~ = ~o n. The admissible values of the ratio 
I=/Ir depend on the relation OOz/~OLr. If  ooz ~ ~on, the energy of the axial 
oscillations must be relatively small, that is, Iz/Ir < 1. For o~, < co//, the 
ratio I2/Ir can be of the order of, or greater than, 1. We can see from the 
formula (1.5) that the phasal motion consists of three parts: a uniform 
motion of the 'velocity' oJr an oscillatory motion caused by the axial 
motion; and an oscillatory motion due to the radial oscillations. According 
to the assumption ~0 < 1, the last term is always small; this is not true for 
the second term when ro/d < 1. For this reason the second term must not 
be omitted. Therefore, by introducing the complex coordinate x + iy, we 
will have 

r0 

+ ~ [exp i ( ~  - 2n r162 + CUE) - exp i(~r - 2n W" z - ~r162 

~o 2 
4 [exp i ( # ' ~  - 2n r162 + 2# ' e )  

- exp i(r - 2n r162 - 23r162 + . . . }  (1 

From this formula it is clear that the most important contribution in the 
processes of absorption and emission is given by the 'principal series' of 
resonances having the frequency w, = ~% - 2n%. 

2. Interaction with Electromagnetic Waves 

The power transferred to the electron by a variable electromagnetic 
field can be calculated as the amount of work per second created by the 
forces of the field on the trajectory perturbed by the field itself. The method 
to be developed here is in fact a generalization of the method utilized by 
Sobelman & Tutin (1963) for the case of a polyperiodic oscillatory motion. 
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Write the potential due to the free oscillations of the field in the form 

At- = ~ au%cos(oo, t + %);  [%1 = 1 (2.1) 

This means that we will hereafter be limited by the dipolar approximation. 
From the above it is clear that the power absorbed by the electron is equal to 

W:-f (~A ~) (2.2) 
O 

where the average must be taken over phases and time. In this formula l~ is 
the velocity of the perturbed motion. If  the ratio A-/A~ is small, this 
velocity can be represented in the form of a series: ~ = ~(0) + ~(~) +/.(2) + . . .  
The first non-vanishing contribution is given by the term t(l), because ~(0~ 
does not depend on the variable field, and thus disappears in the process 
of taking the average. Let us now pass to the calculation of/e(1)(t). The 
Hamiltonian of the system electron + field will be the following: 

1 rp eA_e_A_]2=Ho_ e {p_eA~]A_+ e 2 A_ ~ 
H = 2m U c c J mc\ c ! 2me 2 (2.3) 

We can omit the last term in (2.3), since its contribution to the absorption 
disappears on averaging over 8v Supposing that the interaction between 
the field and the particles begins at the moment t = 0, we can find the 
variations 

t t 

AIi= - OH and Ar i = ---  
O~/Ul 0I~ 

0 0 

resulting from it. It then becomes easy to calculate ~(i): 

i "~l) [ + = ~  \ A I ' ~ "  Oi'(~ 't (2.4) 

Substituting (2.4) in (2.2) we have the following expression for absorption: 

e2~limlidtidt 'avZaJ,~sinwu(t '- t){evi:(~176 
W = + 2de2 .,.-., ,._,~, r 

/a o o 

0o~, f 0% ~~ 0% V~ 
+~Jo  sin~%(t"-t) O,ff.j . ~ / /  / (2.5) 

Here { } represents the classic Poisson brackets. The summation over ij is 
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understood. Finally, introducing the spectral density of the intensity Ik, a 
as the characteristic of the incident radiation, we obtain 

dW= +47re~limloJc .-~o v f dt dt' sinco(t' - t)<{eat(~176 
0 0 

OCOi t' . / a e a t C ~  8eai'(~ ] 
+ <  f ~ " 0 -~  /]  rk'adcod~ (2.6) 

~t is the polarization index. 

3. Negative Absorption at the Frequencies of the 'Principal Series' 

Let us suppose that the incidental wave is polarized along the y-axis. 
Substituting (1,8) in (2.6) and taking all the necessary averages we have: 

N W ~  - -  

4~-3 e 2 
S 13,, r0 J, % [8(CO -- COn) -- 8(CO + CO,)] 

COe -'..-4n 

0 
/3" = a%-  

The number of terms in the sum over n is determined by the effective 
width of the spectral function I(CO) compared to the difference 

COn - -  COn-I = 2CO3 r~ 

If the exterior radiation possesses a sufficiently narrow spectrum, the 8 
functions contribute only once. Integrating (3.1) over ro we have the 
following expression for the absorption of the nth harmonic: 

= - - D ,  ro2co. ,/2 i(ico,i) (3.2) 
e 

where the derivative of the spectral density is defined by 

8I (/3. co.) sign co. &I([co.I) = 
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Let us now examine the sign of the power (3.2). Having completed all 
the necessary differentiations in the formula (3.2), we arrive at the following: 

87r3e2 2 {[ ro l w .  J .  (2n + ~ ) ]  
IV. = me-- J" 1 - 4n 3 2oou J. '  I([c~ 

_l ,o . i  al .r~ + (3.3) 

It is necessary to notice that the limit of possible applicability of this formula 
is the condition 

ro Iz Zo 2 
A I  = A-- 5 ~ 1 

This small parameter represents the product of the ratio ro/A, characterizing 
the degree of inhomogeneity of the magnetic field, with the ratio I~/Ir 
characterizing the degree of excitation of the axial oscillation. First of all, 
consider the case of weak excitation of z oscillations, that is Iz ~ I~. In this 
instance IV, is visibly distinct from zero only for n = O, + 1. Instead of 
Bessel-functions, the approximate expressions 

Jn(z) ~- (n ')-' (2) n 

can be used. Then, for n = 0, 

87r3e2/ rolz alI \ 
W0 = --m~-- tI(os4) - c% 4 - ~  ~ o ~ J _ _  (3.4) 

Because of the condition z0 <~ A we can omit the second term, thus arriving 
at the well-known formula for cyclotron absorption (Sokolov & Ternov, 
1966). For the harmonics n = + 1 in the same approximation, we obtain 
the following formula: 

ea -~)] W§ 8~r3~Iz[[lme 2 ~  II, I + 2 z(l o• I~IL T + _ _ 

1 ro Iz OI } (3,5) 

As in the preceding case, the influence of the second term is negligible. It 
is easy to see that, for n = -1 ,  absorption occurs for any value of the ratio 
ro/A. For the frequency oJl with the condition 

A > 2r0 (3.6) 

the sign of the absorption becomes negative, that is, amplification of the 
waves takes place. It is necessary, however, to notice that this effect is 
1ffIr times less than the absorption, upon the frequency w0. 

Now examine the case when the parameter of inhomogeneity is small, 
ro/A ~ 1. In this case, the condition z0 ~ A does not necessarily demand 
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tha t  the ratio I j I r  be small. Consider  it as being comparab le  to unity. In  
these condit ions only those n for  which (ro/A)n < 1 are of  interest to us. 
(In the opposi te  case 3-.(Iz/4Ir < 1.) Then  f rom (3.3) we find the following 
condi t ion of  negative absorpt ion:  

r0 
~w In I(~o) (2n + z) J.Z(z) < 0 Y.2(z) - (n + 2z) J.'(z) J.(z) A~ 

z = U 4 I ,  

I f  the m a x i m u m  of  spectral intensity occurs near  to the resonance, the last 
t e rm can be neglected and our condit ion becomes 

(n + 2z) d.'(z) d.(z) > J.2(z) (3.7) 

In  so far  as J.(z) is an oscillating function, for  each n a certain domain  of  
z can be found  where this inequality is fulfilled. In  fact, designate the first 
roo t  of  J.(z) as z.l,  the first root  of  J.'(z) as z'.l, and the first root  of  the 
equat ion (n + 2z) J.'(z) - J.(z) = 0 as z.1. I t  is then easy to see that  

t 
Znl < znl < znl, n > 0 

The inequali ty (3.7) will thus be satisfied when z < ~.~. For  n = 0  the 
condit ion (3.7) becomes 

JI(Z) S0(Z ) --  Jo2(Z) > 0 

and possesses an infinite number  of  solutions. 
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